The Nitrogen Contribution of Different Plant Parts to Wheat Grains: Exploring Genotype, Water, and Nitrogen Effects

نویسندگان

  • Rut Sanchez-Bragado
  • M. Dolors Serret
  • José L. Araus
چکیده

The flag leaf has been traditionally considered as the main contributor to grain nitrogen. However, during the reproductive stage, other organs besides the flag leaf may supply nitrogen to developing grains. Therefore, the contribution of the ear and other organs to the nitrogen supplied to the growing grains remains unclear. It is important to develop phenotypic tools to assess the relative contribution of different plant parts to the N accumulated in the grains of wheat which may helps to develop genotypes that use N more efficiently. We studied the effect of growing conditions (different levels of water and nitrogen in the field) on the nitrogen contribution of the spike and different vegetative organs of the plant to the grains. The natural abundance of δ15N and total N content in the flag blade, peduncle, whole spike, glumes and awns were compared to the δ15N and total N in mature grains to trace the origin of nitrogen redistribution to the grains. The δ15N and total N content of the different plant parts correlated positively with the δ15N and total N content of mature grains suggesting that all organs may contribute a portion of their N content to the grains. The potential contribution of the flag blade to grain N increased (by 46%) as the growing conditions improved, whereas the potential contribution of the glumes plus awns and the peduncle increased (46 and 31%, respectively) as water and nitrogen stress increased. In general, potential contribution of the ear providing N to growing grains was similar (42%) than that of the vegetative parts of the plants (30-40%), regardless of the growing conditions. Thus, the potential ear N content could be a positive trait for plant phenotyping, especially under water and nitrogen limiting conditions. In that sense, genotypic variability existed at least between old (tall) and modern (semidwarf) cultivars, with the ear from modern genotypes exhibiting less relative contribution to the total grain N. The combined use of δ15N and N content may be used as an affordable tool to assess the relative contribution of different plant parts to the grain N in wheat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of Emmer and Durum Wheats to Different Levels of Nitrogen Fertilizer

Emmer tetraploid hulled wheats are considered as the ancestor of modern wheat and have considerable potential for durum wheat improvement, especially in terms of grain protein content. To investigate the response of emmer and durum wheats to different levels of nitrogen fertilizer, eight durum and four emmer genotypes were evaluated in the field during 2017 cropping season. The experiment was c...

متن کامل

The impact of atmospheric temperature and soil nitrogen on some physiological traits and dry matter accumulation of wheat (Triticum aestivum cv. Bahar)

Wheat is the most important cereal crop in the world as well as in Iran. The studies related to the effects of global climate change on wheat production usually assess the impact of changes in atmospheric CO2 concentration and temperature on growth and yield. On the other hand, nitrogen is the most crucial plant nutrient for crop production and the proper management and improving the utilizatio...

متن کامل

Nitrogen and Phosphorous Loss as Affected by Plough Direction in Rainfed Wheat Land of a Semi- Arid Region

Sloping farmlands are the major sources of soil, water and nutrient losses in arid and semi-arid regions. Information about the impacts of different tillage practices on soil erosion, nutrient loss and crop nutrient uptake on the sloping farmland of semi- arid soil is, however, limited. This study was carried out to investigate the effects of tillage direction on soil, water, nitrogen and phosp...

متن کامل

Depth of nitrogen fertiliser placement affects nitrogen accumulation, translocation and nitrate-nitrogen content in soil of rainfed wheat

A field experiment was conducted to examine the effects of different depths ofnitrogen (N) fertiliser placements on N accumulation, remobilisation and NO3−-Ncontent in soil of rainfed wheat. Nitrogen was applied on the surface (D1) and inthe 10 cm (D2), 20 cm (D3) and 30 cm (D4) soil layers from 2010 to 2012.Compared with D1 and D2, D3 and D4 treatments obtained significant higher Ndistribution...

متن کامل

Response of Some Bread and Durum Wheat Genotypes to Different Levels of Nitrogen in South West of Iran

In order to identify the effects of different levels of nitrogen fertilizer on seed yield and seed growth indices of some bread and durum wheat genotypes, a field experiment was conducted in 2013-2014 in Khuzestan Agricultural and Natural Resource Research Center. The experiment was designed as a split plot with three replications. Nitrogen application rates (50, 100 and 150 kg N.ha-1) were ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016